Analytic Continuation of Chern-Simons Theory

Analytic Continuation Of Chern-Simons Theory

Edward Witten
School of Natural Sciences, Institute for Advanced Study
Einstein Drive, Princeton, NJ 08540 USA

Abstract

The title of this article refers to analytic continuation of three-dimensional ChernSimons gauge theory away from integer values of the usual coupling parameter k, to explore questions such as the volume conjecture, or analytic continuation of threedimensional quantum gravity (to the extent that it can be described by gauge theory) from Lorentzian to Euclidean signature. Such analytic continuation can be carried out by generalizing the usual integration cycle of the Feynman path integral. Morse theory or Picard-Lefschetz theory gives a natural framework for describing the appropriate integration cycles. An important part of the analysis involves flow equations that turn out to have a surprising four-dimensional symmetry. After developing a general framework, we describe some specific examples (involving the trefoil and figure-eight knots in S^{3}). We also find that the space of possible integration cycles for ChernSimons theory can be interpreted as the "physical Hilbert space" of a twisted version of $\mathcal{N}=4$ super Yang-Mills theory in four dimensions.

Holomorphic Floer theory I: exponential integrals in finite and infinite dimensions

Maxim Kontsevich, Yan Soibelman

February 13, 2024

Abstract

In the first of the series of papers devoted to our project "Holomorphic Floer Theory" we discuss exponential integrals and related wall-crossing structures. We emphasize two points of view on the subject: the one based on the ideas of deformation quantization and the one based on the ideas of Floer theory. Their equivalence is a corollary of our generalized RiemannHilbert correspondence. In the case of exponential integrals this amounts to several comparison isomorphisms between local and global versions of de Rham and Betti cohomology. We develop the corresponding theories in particular generalizing Morse-Novikov theory to the holomorphic case. We prove that arising wall-crossing structures are analytic. As a corollary, perturbative expansions of exponential integrals are resurgent. Based on a careful study of finite-dimensional exponential integrals we propose a conjectural approach to infinite-dimensional exponential integrals. We illustrate this approach in the case of Feynman path integral with holomonnhin Ionmancion houndowr annditinno oc wall oo in the noon off tha

We have $\quad Z_{G, k}\left(M^{3}\right) \quad[W R T]$
G compact lie group(, simple)

$$
k \in H^{4}(B G, \mathbb{Z}) \simeq \mathbb{Z}
$$

Def $\hbar=\frac{1}{k}$

Question:

- Path integral def for Jones poly? (Not just evaluations at $\left.q=e^{\frac{2 \pi i}{k}}\right)$

Observation:

- Asymptotics of $Z_{\text {svali,k }}\left(S^{3},\left(k, R_{\lambda}\right)\right)$ as $k \rightarrow \infty, \lambda \rightarrow \infty$

involve hyperbolic volume. $\quad V_{0}(M)=\mid C S\left(\right.$ Geometric rep $\left.\pi_{1}(M) \rightarrow S L_{2} a\right) \mid$

$$
M=s^{3} \backslash K
$$

$$
Z(\hbar)=\int_{\mathbb{R}} e^{-S / \hbar} d x \quad S=i\left(\frac{x^{3}}{3}-x\right)
$$

$$
\begin{aligned}
& B:=(S /)^{-1}\left(\left[\left[^{\prime \prime} 1000^{\prime \prime}, \infty\right)\right)\right. \\
& {[\mathbb{R}] \in H_{1}\left(\mathbb{C}_{x}, B\right)}
\end{aligned}
$$

descending
flow lines for $\operatorname{Re}(-S / \hbar)$

$$
\begin{aligned}
& \operatorname{Crit}\left(\frac{x^{3}}{3}-x\right)=\{1,-1\} \\
& {[\mathbb{R}]=J_{1}+J_{-1}}
\end{aligned}
$$

\uparrow

$$
Z(t)=\int_{J_{1}} e^{-5 / / 2} d x+\int_{J_{-1}} e^{-5 / / 2} d x
$$

Analytically Con tines lefschetz thimbles in t.

Relative Homology Local system

- $H_{1}\left(C_{x}, B\right)$ forms a ok 2 local system on \mathbb{C}_{i}^{*} with order 3 monodromy around zero.
- Bases change across "stoles Rag.", where thine are morse flow lines between critical points.
- $[\mathbb{R}]$ continues over triple cover of \mathbb{C}_{n}^{*}

Twisted de Ram complex
$X\left(=C_{x}\right)$ affine variety, dol $\in \Omega^{n, 0}(X)$
$s \in \theta(x)$

$$
\Omega_{-5 / a}^{*}(X):=e^{-5 / t} \Omega_{a l g}^{*}(X)
$$

$$
\Omega_{-s / \hbar}^{*}(X) \simeq \Omega_{a j}^{*}(X), d-\frac{d s}{\hbar_{0}} \wedge
$$

Special element $e^{-S / t} d v a l$

Perturbation Theory

$$
\begin{aligned}
S & =\frac{1}{2} x^{2}+\sum_{k=3}^{N} \frac{a_{k}}{k!} x^{k} \\
z(t) & =\int e^{-S(x) / \hbar} d x=\hbar^{-1 / 2} \int e^{-S\left(t^{1 / 2} x\right) / \hbar}=\hbar^{-1 / 2} \int e^{-\frac{1}{2} x^{2}+\sum_{k=3}^{N} \frac{a_{k}}{k!} h^{k / 2-1} x^{k}} \\
& =\hbar^{-1 / 2} \sqrt{\frac{\pi}{2}}\left(1+c_{1} t^{1 / 2}+c_{2} t+\cdots\right)
\end{aligned}
$$

Sum
over
feynman diagrams

Borel Transform

$$
\begin{aligned}
f(\hbar) & =\sum c_{k} \hbar^{k} \\
B f(s) & :=\sum \frac{c_{k}}{k!} s^{k}
\end{aligned}
$$

Calculus Excersize: If $f(t)$ entive,

$$
f(\hbar)=\frac{1}{\hbar} \int_{0}^{\infty} e^{-s / t} B f(s) d s
$$

Bowel Resummation
If $B f(s)$ can be analytically continued along \mathbb{R}_{+}, define

$$
f^{b s}(\hbar):=\frac{1}{\hbar} \int_{s=0}^{\infty} e^{-s / t} B f(s) d s \quad(R e(t)>0)
$$

Adjust Integration ray to phase of te:

$$
f^{\text {rad }}(\hbar):=\frac{1}{\hbar} \int_{\operatorname{Agg}_{g}(t) \mathbb{R}_{+}} e^{-s / \hbar} B f(s) d s
$$

"Bored Plane" \mathbb{C}_{s}

Problem: Bael Resummention gives discontinuous answer!
Solution: must consider all critical points and combine.

Bored Transform has meaning:

$$
Z(\hbar)=\int e^{-S(x) / \hbar} d x=\int e^{-S / \hbar}\left(S_{*} d x\right)
$$

branched triple cover
$\Rightarrow S_{x} d x$ is the Bowel transform of $t z(t)$

Consider " $S_{*} d x$ " as a multivalued
1-form indexed by sheets of $S: \mathbb{C}_{x} \rightarrow \mathbb{C}_{s}$

$$
S(x)=i\left(x^{3}-x\right)
$$

Picture of $[\mathbb{R}]=J_{1}+J_{-1}$ in the Bored plane.

Image of Lefischetz thimbles under S.

Stokes rays happen when

$$
\hbar\left(s_{i}-s_{j}\right) \in \mathbb{R}
$$

Recipe for analytic continuation:
(1) Write $\left[X_{\mathbb{R}}\right]$ in terms of Lefschetz thimbles

$$
\begin{aligned}
& {\left[X_{\mathbb{R}}\right]=\sum n_{i} \mathcal{Z}_{n}^{(i)}} \\
& z(\hbar)=\sum n_{i} z^{(i)}(\hbar)
\end{aligned}
$$

(2) At stokes rays, apply stokes matrices to \vec{n} to get loc. const. section of homology.

Stokes Matrices:

$$
\begin{aligned}
M_{i j}= & \sum_{\text {flow linus }} \pm 1 \quad x_{i}, x_{j} \in \operatorname{Crit}(S) \\
& \text { from } x_{i} \text { to } x_{j}
\end{aligned}
$$

$$
S=\left(x^{2}+y^{2}\right)^{2}-\left(x^{2}+y^{2}\right)
$$

Must Choose $\frac{1}{2}$-dim cycle of Crit (s) to get

$$
\operatorname{dim}_{\mathbb{R}} y^{(i)}=d
$$

If $C^{(i)}$ orbit of symmetry of S there is a natural choice

Suppose
X variety
$S: X \rightarrow \mathbb{C}$ holomorphic
$G_{c} \propto X$ Symmetry of S
$\omega \in \Omega^{\prime, 1}(x)$ Kähler form
$G \subset G_{C}$ maximal compact, acting by hamiltonian isometries
$\mu: X \rightarrow g^{*}$ moment map

Def $a G_{c}$ orbit θ is semistable if it contains a point x with $\mu(x)=0$.

$$
\Rightarrow \theta=G_{G} \cdot x \cong T^{*}(G \cdot x)
$$

lemma μ preserved under $\nabla \operatorname{Re}(S)$

$$
\{\langle\mu, \xi\rangle, S\}=0
$$

\Rightarrow we only care about semistable critical loci.

Application to CS theory:

- Conn $\left(\mathbb{P}_{c}\right)$

$$
\begin{array}{ll}
P_{\emptyset} \emptyset & P_{c}:= \\
M^{3} & \\
& G_{c} \text { bound le }
\end{array}
$$

- $\widetilde{C S}: \operatorname{Conn}\left(P_{c}\right) \longrightarrow \mathbb{C}$
- $\operatorname{Aut}\left(P_{c}\right) r \operatorname{Com}\left(\mathbb{P}_{c}\right)$

We can write $\Theta=A+i \phi$ where $A \in \operatorname{Conn}(P), \phi \in \Omega^{\prime}\left(M^{3}, g_{\rho}\right)$
So $\overline{\mathcal{G}}=A$-id.

- $h=\int_{M^{3}}\left\langle\delta \bar{\theta} \wedge\langle\theta\rangle, \omega=\int_{M^{3}}\langle\delta \phi \wedge \delta A\rangle\right.$
- Aut (P) acts preserving kähler str.
- $\mu(\theta)=d_{A} \star \phi$
(reduction to max compact)
Flat G_{c} connection semistable $\Leftrightarrow \exists$ harmonic "metric" Eg: trivial conn, hyp conn

Flow Equations:

$$
d C S_{\theta}(\delta \theta)=\int_{M^{3}}\langle\delta \theta \wedge \Omega\rangle
$$

here $\Omega=F_{A}-\phi_{\wedge} \phi+i d_{1} \phi$ is the curvature of Θ

$$
\begin{aligned}
\nabla C S_{\theta} & =\phi \bar{\Omega} \\
& =\$\left(F-\phi \wedge \phi-i d_{A} \phi\right)
\end{aligned}
$$

Flow Equation: $\dot{\theta}=-e^{-i \alpha} \star \bar{\Omega}$

$$
\begin{aligned}
& \dot{A}=-\left(\cos \alpha(F-\phi \wedge \phi)-\sin \alpha d_{A} \phi\right) \\
& \dot{\phi}=\hbar\left(\sin \alpha(F-\phi \wedge \phi)+\cos \alpha d_{A} \phi\right)
\end{aligned}
$$

4D Interpretation
Consider $\theta(t)$ as connection on $P_{c} \times \mathbb{R}$ over $M^{3} \times \mathbb{R}$

$$
\begin{aligned}
\Omega^{4} & =d t \wedge \dot{\theta}+\Omega^{3} \\
* \Omega^{4} & =\hbar \dot{\theta}+d t \wedge k \Omega^{3}
\end{aligned}
$$

Self duality equations:

$$
\begin{aligned}
& \dot{\theta}=\hbar \Omega^{3} \\
& \Leftrightarrow \\
& \Omega=* \Omega
\end{aligned}
$$

Kapustim-Witten equations:

$$
\dot{\theta}=-e^{-i \alpha} \star \overline{\Omega^{3}}
$$

\Leftrightarrow

$$
\Omega=-e^{-i d} * \bar{\Omega}
$$

Should include $d_{A} \star \phi=0$

Boned Plane

- Multivalued 1-form with expansions given by Morel transform of Perturbation theory.
t Plane

- D-module with \mathbb{Z}-symm "twisted de-Rhan ax"
- Z्Z-Local System, with jumping bases. Transition functions given by KW equations.
- Pairings from bowel sumption of perturbation theory.

